
Package: monmlp (via r-universe)
October 23, 2024

Type Package

Title Multi-Layer Perceptron Neural Network with Optional Monotonicity
Constraints

Version 1.1.5

Author Alex J. Cannon

Maintainer Alex J. Cannon <alex.cannon@canada.ca>

Description Train and make predictions from a multi-layer perceptron
neural network with optional partial monotonicity constraints.

License GPL-2

LazyLoad yes

Depends optimx

NeedsCompilation no

Date/Publication 2017-12-05 00:05:01 UTC

Repository https://alexcannon.r-universe.dev

RemoteUrl https://github.com/cran/monmlp

RemoteRef HEAD

RemoteSha 3394813aef1436108df4e9614f210d8e0ae2ddd3

Contents
monmlp-package . 2
gam.style . 3
linear . 4
linear.prime . 5
logistic . 5
logistic.prime . 6
monmlp.fit . 6
monmlp.predict . 8
tansig . 9
tansig.prime . 10

Index 11

1

2 monmlp-package

monmlp-package Monotone Multi-Layer Perceptron Neural Network

Description

The monmlp package implements one and two hidden-layer multi-layer perceptron neural network
(MLP) models. An optional monotone constraint, which guarantees monotonically increasing be-
haviour of model outputs with respect to specified covariates, can be added to the MLP. The result-
ing monotone MLP (MONMLP) regression model is based on Zhang and Zhang (1999).

Early stopping can be combined with bootstrap aggregation to control overfitting. The model re-
duces to a standard MLP neural network if the monotone constraint is not invoked.

MLP and MONMLP models are fit using the monmlp.fit function. Predictions from a fitted model
are made using the monmlp.predict function. The gam.style function can be used to investigate
fitted covariate/response relationships.

Details

Package: monmlp
Type: Package
License: GPL-2
LazyLoad: yes

References

Lang, B., 2005. Monotonic multi-layer perceptron networks as universal approximators. In: W.
Duch et al. (eds.): ICANN 2005, Lecture Notes in Computer Science, 3697:31-37.
doi:10.1007/11550907

Minin, A., Velikova, M., Lang, B., and Daniels, H., 2010. Comparison of universal approximators
incorporating partial monotonicity by structure. Neural Networks, 23:471-475.
doi:10.1016/j.neunet.2009.09.002

Zhang, H. and Zhang, Z., 1999. Feedforward networks with monotone constraints. In: International
Joint Conference on Neural Networks, vol. 3, p. 1820-1823. doi:10.1109/IJCNN.1999.832655

Examples

set.seed(123)
x <- as.matrix(seq(-10, 10, length = 100))
y <- logistic(x) + rnorm(100, sd = 0.2)

dev.new()
plot(x, y)
lines(x, logistic(x), lwd = 10, col = "gray")

gam.style 3

MLP w/ 2 hidden nodes
w.mlp <- monmlp.fit(x = x, y = y, hidden1 = 2, iter.max = 500)
lines(x, attr(w.mlp, "y.pred"), col = "red", lwd = 3)

MLP w/ 2 hidden-layers (2 nodes each) and early stopping
w.stp <- monmlp.fit(x = x, y = y, hidden1 = 2, hidden2 = 2,

bag = TRUE, iter.max = 500, iter.stopped = 10)
lines(x, attr(w.stp, "y.pred"), col = "orange", lwd = 3)

MONMLP w/ 2 hidden nodes
w.mon <- monmlp.fit(x = x, y = y, hidden1 = 2, monotone = 1,

iter.max = 500)
lines(x, attr(w.mon, "y.pred"), col = "blue", lwd = 3)

gam.style GAM-style effects plots for interpreting MLP and MONMLP models

Description

GAM-style effects plots provide a graphical means of interpreting fitted covariate/response rela-
tionships. From Plate et al. (2000): The effect of the ith input variable at a particular input point
Delta.i.x is the change in f resulting from changing X1 to x1 from b1 (the baseline value [...])
while keeping the other inputs constant. The effects are plotted as short line segments, centered at
(x.i, Delta.i.x), where the slope of the segment is given by the partial derivative. Variables that
strongly influence the function value have a large total vertical range of effects. Functions without
interactions appear as possibly broken straight lines (linear functions) or curves (nonlinear func-
tions). Interactions show up as vertical spread at a particular horizontal location, that is, a vertical
scattering of segments. Interactions are present when the effect of a variable depends on the values
of other variables.

Usage

gam.style(x, weights, column, baseline = mean(x[,column]),
epsilon = 1e-5, seg.len = 0.02, seg.cols = "black",
plot = TRUE, return.results = FALSE, ...)

Arguments

x matrix with number of rows equal to the number of samples and number of
columns equal to the number of covariate variables.

weights list returned by monmlp.fit.

column column of x for which effects plots should be returned.

baseline value of x[,column] to be used as the baseline for calculation of covariate ef-
fects; defaults to mean(x[,column]).

epsilon step-size used in the finite difference calculation of the partial derivatives.

seg.len length of effects line segments expressed as a fraction of the range of x[,column].

4 linear

seg.cols colors of effects line segments.

plot if TRUE (the default) then an effects plots for each response variable is produced.

return.results if TRUE then values of effects and partial derivatives for each response variable
are returned.

... further arguments to be passed to plot.

Value

A list with elements:

effects a matrix of covariate effects.

partials a matrix of covariate partial derivatives.

References

Cannon, A.J. and I.G. McKendry, 2002. A graphical sensitivity analysis for interpreting statistical
climate models: Application to Indian monsoon rainfall prediction by artificial neural networks and
multiple linear regression models. International Journal of Climatology, 22:1687-1708.

Plate, T., J. Bert, J. Grace, and P. Band, 2000. Visualizing the function computed by a feedforward
neural network. Neural Computation, 12(6): 1337-1354.

See Also

monmlp.fit, monmlp.predict

Examples

set.seed(1)
x <- matrix(runif(350*6), ncol=6)
y <- as.matrix(5*sin(10*x[,1]*x[,2]) + 20*(x[,3]-0.5)^2 -

10*x[,4] + 20*x[,5]*x[,6])

w <- monmlp.fit(x = x, y = y, hidden1 = 4, n.trials = 1,
iter.max = 500)

for (i in seq(ncol(x))) gam.style(x, weights = w, column = i)

linear Identity function

Description

Computes a trivial identity function. Used as the hidden layer transfer function for linear MLP or
MONMLP models.

Usage

linear(x)

linear.prime 5

Arguments

x numeric vector.

See Also

linear.prime

linear.prime Derivative of the linear function

Description

Derivative of the linear function.

Usage

linear.prime(x)

Arguments

x numeric vector.

See Also

linear

logistic Logistic sigmoid function

Description

Computes the logistic sigmoid function. Used as a hidden layer transfer function for nonlinear MLP
or MONMLP models.

Usage

logistic(x)

Arguments

x numeric vector.

See Also

logistic.prime

6 monmlp.fit

logistic.prime Derivative of the logistic sigmoid function

Description

Derivative of the logistic sigmoid function.

Usage

logistic.prime(x)

Arguments

x numeric vector.

See Also

logistic

monmlp.fit Fit one or more MLP or MONMLP models

Description

Fit an individual model or ensemble of MLP or MONMLP regression models using optimx opti-
mization routines to minimize a least squares cost function. Optional stopped training and bootstrap
aggregation (bagging) can be used to help avoid overfitting.

If invoked, the monotone argument enforces increasing behaviour between specified columns of
x and model outputs. In this case, the exp function is applied to the relevant weights following
initialization and during optimization; manual adjustment of init.weights may be needed.

Note: x and y are automatically standardized prior to fitting and predictions are automatically
rescaled by monmlp.predict. This behaviour can be suppressed for y by the scale.y argument.

Usage

monmlp.fit(x, y, hidden1, hidden2 = 0, iter.max = 5000,
n.trials = 1, n.ensemble = 1, bag = FALSE,
cases.specified = NULL, iter.stopped = NULL,
scale.y = TRUE, Th = tansig, To = linear,
Th.prime = tansig.prime, To.prime = linear.prime,
monotone = NULL, init.weights = NULL,
max.exceptions = 10, silent = FALSE, method = "BFGS",
control = list(trace = 0))

monmlp.fit 7

Arguments

x covariate matrix with number of rows equal to the number of samples and num-
ber of columns equal to the number of covariates.

y response matrix with number of rows equal to the number of samples and num-
ber of columns equal to the number of response variables.

hidden1 number of hidden nodes in the first hidden layer.
hidden2 number of hidden nodes in the second hidden layer.
iter.max maximum number of iterations of the optimization algorithm.
n.trials number of repeated trials used to avoid local minima.
n.ensemble number of ensemble members to fit.
bag logical variable indicating whether or not bootstrap aggregation (bagging) should

be used.
cases.specified

if bag = TRUE, a list that specifies the bootstrapped cases to be used in each
ensemble member.

iter.stopped if bag = TRUE, specifies the number of stopped training iterations between cal-
culation of the cost function on the out-of-bootstrap cases.

scale.y logical determining if columns of the response matrix should be scaled to zero
mean and unit variance prior to fitting. Set this to FALSE if using an output layer
transfer function that limits the range of predictions.

Th hidden layer transfer function.
To output layer transfer function.
Th.prime derivative of the hidden layer transfer function.
To.prime derivative of the output layer transfer function.
monotone column indices of covariates for which the monotonicity constraint should hold.
init.weights either a vector giving the minimum and maximum allowable values of the ran-

dom weights, an initial weight vector, or NULL to calculate based on fan-in.
max.exceptions maximum number of exceptions of the optimization routine before fitting is ter-

minated with an error.
silent logical determining if diagnostic messages should be suppressed.
method optimx optimization method.
control list of optimx control parameters.

Value

list containing fitted weight matrices with attributes including called values of x, y, Th, To, Th.prime,
To.prime, monotone, bag, iter.max, and iter.stopped, along with values of covariate/response
column means and standard deviations (x.center, x.scale, y.center, y.scale), out-of-bootstrap
cases oob, predicted values y.pred, and, if stopped training is switched on, the iteration iter.best
and value of the cost function cost.best that minimized the out-of-bootstrap validation error.

See Also

monmlp.predict, gam.style

8 monmlp.predict

Examples

set.seed(123)
x <- as.matrix(seq(-10, 10, length = 100))
y <- logistic(x) + rnorm(100, sd = 0.2)

dev.new()
plot(x, y)
lines(x, logistic(x), lwd = 10, col = "gray")

MLP w/ 2 hidden nodes
w.mlp <- monmlp.fit(x = x, y = y, hidden1 = 2, iter.max = 500)
lines(x, attr(w.mlp, "y.pred"), col = "red", lwd = 3)

MLP w/ 2 hidden nodes and stopped training
w.stp <- monmlp.fit(x = x, y = y, hidden1 = 2, bag = TRUE,

iter.max = 500, iter.stopped = 10)
lines(x, attr(w.stp, "y.pred"), col = "orange", lwd = 3)

MONMLP w/ 2 hidden nodes
w.mon <- monmlp.fit(x = x, y = y, hidden1 = 2, monotone = 1,

iter.max = 500)
lines(x, attr(w.mon, "y.pred"), col = "blue", lwd = 3)

monmlp.predict Make predictions from a fitted MLP or MONMLP model

Description

Make predictions from a fitted model or ensemble of MLP or MONMLP models.

Usage

monmlp.predict(x, weights)

Arguments

x covariate matrix with number of rows equal to the number of samples and num-
ber of columns equal to the number of covariates.

weights list containing weight matrices and other parameters from monmlp.fit.

Value

a matrix with number of rows equal to the number of samples and number of columns equal to the
number of response variables. If weights is from an ensemble of models, the matrix is the ensemble
mean and the attribute ensemble contains a list with predictions for each ensemble member.

See Also

monmlp.fit

tansig 9

Examples

set.seed(123)
x <- as.matrix(seq(-10, 10, length = 100))
y <- logistic(x) + rnorm(100, sd = 0.2)

dev.new()
plot(x, y)
lines(x, logistic(x), lwd = 10, col = "gray")

Ensemble of MONMLP models w/ 3 hidden nodes
w.mon <- monmlp.fit(x = x, y = y, hidden1 = 3, monotone = 1,

n.ensemble = 15, bag = TRUE, iter.max = 500,
control = list(trace = 0))

p.mon <- monmlp.predict(x = x, weights = w.mon)

Plot predictions from ensemble members
matlines(x = x, y = do.call(cbind, attr(p.mon, "ensemble")),

col = "cyan", lty = 2)

Plot ensemble mean
lines(x, p.mon, col = "blue", lwd = 3)

tansig Hyperbolic tangent sigmoid function

Description

Computes the hyperbolic tangent sigmoid function. Used as a hidden layer transfer function for
nonlinear MLP or MONMLP models.

Usage

tansig(x)

Arguments

x numeric vector.

See Also

tansig.prime

10 tansig.prime

tansig.prime Derivative of the hyperbolic tangent function

Description

Derivative of the hyperbolic tangent function.

Usage

tansig.prime(x)

Arguments

x numeric vector.

See Also

tansig

Index

∗ package
monmlp-package, 2

gam.style, 2, 3, 7

linear, 4, 5
linear.prime, 5, 5
logistic, 5, 6
logistic.prime, 5, 6

monmlp (monmlp-package), 2
monmlp-package, 2
monmlp.fit, 2–4, 6, 8
monmlp.predict, 2, 4, 6, 7, 8

optimx, 6, 7

tansig, 9, 10
tansig.prime, 9, 10

11

	monmlp-package
	gam.style
	linear
	linear.prime
	logistic
	logistic.prime
	monmlp.fit
	monmlp.predict
	tansig
	tansig.prime
	Index

