Package: MBC 0.10-6

MBC: Multivariate Bias Correction of Climate Model Outputs

Calibrate and apply multivariate bias correction algorithms for climate model simulations of multiple climate variables. Three methods described by Cannon (2016) <doi:10.1175/JCLI-D-15-0679.1> and Cannon (2018) <doi:10.1007/s00382-017-3580-6> are implemented — (i) MBC Pearson correlation (MBCp), (ii) MBC rank correlation (MBCr), and (iii) MBC N-dimensional PDF transform (MBCn) — as is the Rank Resampling for Distributions and Dependences (R2D2) method.

Authors:Alex J. Cannon [aut, cre]

MBC_0.10-6.tar.gz
MBC_0.10-6.zip(r-4.5)MBC_0.10-6.zip(r-4.4)MBC_0.10-6.zip(r-4.3)
MBC_0.10-6.tgz(r-4.4-any)MBC_0.10-6.tgz(r-4.3-any)
MBC_0.10-6.tar.gz(r-4.5-noble)MBC_0.10-6.tar.gz(r-4.4-noble)
MBC_0.10-6.tgz(r-4.4-emscripten)MBC_0.10-6.tgz(r-4.3-emscripten)
MBC.pdf |MBC.html
MBC/json (API)

# Install 'MBC' in R:
install.packages('MBC', repos = c('https://alexcannon.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • cccma - Sample CanESM2 and CanRCM4 data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.98 score 5 stars 1 packages 16 scripts 335 downloads 4 mentions 8 exports 7 dependencies

Last updated 2 years agofrom:4d93c0f2e6. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:escoreMBCnMBCpMBCrMRSQDMR2D2rot.random

Dependencies:bootenergyFNNgsllatticeMatrixRcpp