Package: CaDENCE 1.2.5
CaDENCE: Conditional Density Estimation Network Construction and Evaluation
Parameters of a user-specified probability distribution are modelled by a multi-layer perceptron artificial neural network. This framework can be used to implement probabilistic nonlinear models including mixture density networks, heteroscedastic regression models, zero-inflated models, etc. following Cannon (2012) <doi:10.1016/j.cageo.2011.08.023>.
Authors:
CaDENCE_1.2.5.tar.gz
CaDENCE_1.2.5.zip(r-4.5)CaDENCE_1.2.5.zip(r-4.4)CaDENCE_1.2.5.zip(r-4.3)
CaDENCE_1.2.5.tgz(r-4.4-any)CaDENCE_1.2.5.tgz(r-4.3-any)
CaDENCE_1.2.5.tar.gz(r-4.5-noble)CaDENCE_1.2.5.tar.gz(r-4.4-noble)
CaDENCE_1.2.5.tgz(r-4.4-emscripten)CaDENCE_1.2.5.tgz(r-4.3-emscripten)
CaDENCE.pdf |CaDENCE.html✨
CaDENCE/json (API)
# Install 'CaDENCE' in R: |
install.packages('CaDENCE', repos = c('https://alexcannon.r-universe.dev', 'https://cloud.r-project.org')) |
- FraserSediment - Sediment and stream discharge data for Fraser River at Hope
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 7 years agofrom:7c754e5e40. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:cadence.costcadence.evaluatecadence.fitcadence.initializecadence.predictcadence.reshapedbgammadblnormdbpareto2dbweibulldpareto2dummy.codegam.stylelogisticpbgammapblnormpbpareto2pbweibullppareto2qbgammaqblnormqbpareto2qbweibullqpareto2rbfrbgammarblnormrbpareto2rbweibullrpareto2rpropxval.buffer
Dependencies:pso